

I Semester B.C.A. Degree Examination, Nov./Dec. 2017 (CBCS) (F+R)

(2014-15 and Onwards)
BCA 104 : DIGITAL ELECTRONICS

Time: 3 Hours Max. Marks: 70

Instruction: Answer all the Sections.

SECTION - A

I. Answer any ten of the following questions:

(10×2=20)

1) Define electric current and specify the expression for current.

2) What do you mean by active element and passive element?

3) State Norton's theorem.

- 4) Define the terms Time Period and Frequency.
- 5) What is conduction band and forbidden band?
- 6) What is doping?
- 7) Find the 2's complement of 101110011.
- 8) Convert the binary number 1101011₍₂₎ to gray code.
- 9) Show that $C + \overline{BC} = 1$.
- 10) Define encoder and decoder.
- 11) Write any two difference between Latch and flip flop.
- 12) What are the basic functions of shift register?

SECTION-B

II. Answer any five of the following questions:

(5×10=50)

13) a) Briefly explain the current divider circuit.

5
b) State and explain Kirchoff's voltage law.

5

P.T.O.

SN - 657	7	
14) a) State super position theorem and explain with an example.	5
b) Describe Bohr's atomic model,	5
15) a	Mention the differences between intrinsic and extrinsic semicond	ductor. 5
b	Briefly explain the working of bridge rectifier.	5
16) a	Convert (BCA) ₁₆ to () ₂ , () ₈ , () ₁₀ .	6
b	Subtract 29 ₍₁₀₎ - 7 ₍₁₀₎ using 2's complement method.	4
	Simplify the given minterm expression using K-map.	6
	$F = \Sigma m (1, 5, 7, 8, 9, 13) + \Sigma d (3, 12)$.	
b)	State and prove De-Morgon's theorem.	4
18) a)	What is universal gate? Realize NAND as universal gate.	5
b)	With a neat circuit diagram explain the working of Full Adder.	5
	Design a 4 to 1 multiplexer circuit and explain.	5
b)	Explain the working of clocked RS flip-flop with truth table.	5
	Explain the working of 4 bit serial-in-parallel-out shift register.	5
	What are the operating characteristics of Flip Flop?	5